48 research outputs found

    Risk of asthmatic episodes in children exposed to sulfur dioxide stack emissions from a refinery point source in Montreal, Canada.

    Get PDF
    BACKGROUND: Little is known about the respiratory effects of short-term exposures to petroleum refinery emissions in young children. This study is an extension of an ecologic study that found an increased rate of hospitalizations for respiratory conditions among children living near petroleum refineries in Montreal (Canada). METHODS: We used a time-stratified case-crossover design to assess the risk of asthma episodes in relation to short-term variations in sulfur dioxide levels among children 2-4 years of age living within 0.5-7.5 km of the refinery stacks. Health data used to measure asthma episodes included emergency department (ED) visits and hospital admissions from 1996 to 2004. We estimated daily levels of SO2 at the residence of children using a) two fixed-site SO2 monitors located near the refineries and b) the AERMOD (American Meteorological Society/Environmental Protection Agency Regulatory Model) atmospheric dispersion model. We used conditional logistic regression to estimate odds ratios associated with an increase in the interquartile range of daily SO2 mean and peak exposures (31.2 ppb for AERMOD peaks). We adjusted for temperature, relative humidity, and regional/urban background air pollutant levels. RESULTS: The risks of asthma ED visits and hospitalizations were more pronounced for same-day (lag 0) SO2 peak levels than for mean levels on the same day, or for other lags: the adjusted odds ratios estimated for same-day SO2 peak levels from AERMOD were 1.10 [95% confidence interval (CI), 1.00-1.22] and 1.42 (95% CI, 1.10-1.82), over the interquartile range, for ED visits and hospital admissions, respectively. CONCLUSIONS: Short-term episodes of increased SO2 exposures from refinery stack emissions were associated with a higher number of asthma episodes in nearby children

    Modelling the variation of land surface temperature as determinant of risk of heat-related health events

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The evaluation of exposure to ambient temperatures in epidemiological studies has generally been based on records from meteorological stations which may not adequately represent local temperature variability. Here we propose a spatially explicit model to estimate local exposure to temperatures of large populations under various meteorological conditions based on satellite and meteorological data.</p> <p>Methods</p> <p>A general linear model was used to estimate surface temperatures using 15 LANDSAT 5 and LANDSAT 7 images for Quebec Province, Canada between 1987 and 2002 and spanning the months of June to August. The images encompassed both rural and urban landscapes and predictors included: meteorological records of temperature and wind speed, distance to major water bodies, Normalized Differential Vegetation Index (NDVI), land cover (built and bare land, water, or vegetation), latitude, longitude, and week of the year.</p> <p>Results</p> <p>The model explained 77% of the variance in surface temperature, accounting for both temporal and spatial variations. The standard error of estimates was 1.42°C. Land cover and NDVI were strong predictors of surface temperature.</p> <p>Conclusions</p> <p>This study suggests that a statistical approach to estimating surface temperature incorporating both spatially explicit satellite data and time-varying meteorological data may be relevant to assessing exposure to heat during the warm season in the Quebec. By allowing the estimation of space- and time-specific surface temperatures, this model may also be used to assess the possible impacts of land use changes under various meteorological conditions. It can be applied to assess heat exposure within a large population and at relatively fine-grained scale. It may be used to evaluate the acute health effect of heat exposure over long time frames. The method proposed here could be replicated in other areas around the globe for which satellite data and meteorological data is available.</p

    Risk of Asthmatic Episodes in Children Exposed to Sulfur Dioxide Stack Emissions from a Refinery Point Source in Montreal, Canada

    Get PDF
    BACKGROUND: Little is known about the respiratory effects of short-term exposures to petroleum refinery emissions in young children. This study is an extension of an ecologic study that found an increased rate of hospitalizations for respiratory conditions among children living near petroleum refineries in Montreal (Canada). METHODS: We used a time-stratified case-crossover design to assess the risk of asthma episodes in relation to short-term variations in sulfur dioxide levels among children 2-4 years of age living within 0.5-7.5 km of the refinery stacks. Health data used to measure asthma episodes included emergency department (ED) visits and hospital admissions from 1996 to 2004. We estimated daily levels of SO2 at the residence of children using a) two fixed-site SO2 monitors located near the refineries and b) the AERMOD (American Meteorological Society/Environmental Protection Agency Regulatory Model) atmospheric dispersion model. We used conditional logistic regression to estimate odds ratios associated with an increase in the interquartile range of daily SO2 mean and peak exposures (31.2 ppb for AERMOD peaks). We adjusted for temperature, relative humidity, and regional/urban background air pollutant levels. RESULTS: The risks of asthma ED visits and hospitalizations were more pronounced for same-day (lag 0) SO2 peak levels than for mean levels on the same day, or for other lags: the adjusted odds ratios estimated for same-day SO2 peak levels from AERMOD were 1.10 [95% confidence interval (CI), 1.00-1.22] and 1.42 (95% CI, 1.10-1.82), over the interquartile range, for ED visits and hospital admissions, respectively. CONCLUSIONS: Short-term episodes of increased SO2 exposures from refinery stack emissions were associated with a higher number of asthma episodes in nearby children

    Assessment and prevention of acute health effects of weather conditions in Europe, the PHEWE project: background, objectives, design

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The project "Assessment and prevention of acute health effects of weather conditions in Europe" (PHEWE) had the aim of assessing the association between weather conditions and acute health effects, during both warm and cold seasons in 16 European cities with widely differing climatic conditions and to provide information for public health policies.</p> <p>Methods</p> <p>The PHEWE project was a three-year pan-European collaboration between epidemiologists, meteorologists and experts in public health. Meteorological, air pollution and mortality data from 16 cities and hospital admission data from 12 cities were available from 1990 to 2000. The short-term effect on mortality/morbidity was evaluated through city-specific and pooled time series analysis. The interaction between weather and air pollutants was evaluated and health impact assessments were performed to quantify the effect on the different populations. A heat/health watch warning system to predict oppressive weather conditions and alert the population was developed in a subgroup of cities and information on existing prevention policies and of adaptive strategies was gathered.</p> <p>Results</p> <p>Main results were presented in a symposium at the conference of the International Society of Environmental Epidemiology in Paris on September 6<sup>th </sup>2006 and will be published as scientific articles. The present article introduces the project and includes a description of the database and the framework of the applied methodology.</p> <p>Conclusion</p> <p>The PHEWE project offers the opportunity to investigate the relationship between temperature and mortality in 16 European cities, representing a wide range of climatic, socio-demographic and cultural characteristics; the use of a standardized methodology allows for direct comparison between cities.</p

    Cardiovascular effects of sub-daily levels of ambient fine particles: a systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While the effects of daily fine particulate exposure (PM) have been well reviewed, the epidemiological and physiological evidence of cardiovascular effects associated to sub-daily exposures has not. We performed a theoretical model-driven systematic non-meta-analytical literature review to document the association between PM sub-daily exposures (≤6 hours) and arrhythmia, ischemia and myocardial infarction (MI) as well as the likely mechanisms by which sub-daily PM exposures might induce these acute cardiovascular effects. This review was motivated by the assessment of the risk of exposure to elevated sub-daily levels of PM during fireworks displays.</p> <p>Methods</p> <p>Medline and Elsevier's EMBase were consulted for the years 1996-2008. Search keywords covered potential cardiovascular effects, the pollutant of interest and the short duration of the exposure. Only epidemiological and experimental studies of adult humans (age > 18 yrs) published in English were reviewed. Information on design, population and PM exposure characteristics, and presence of an association with selected cardiovascular effects or physiological assessments was extracted from retrieved articles.</p> <p>Results</p> <p>Of 231 articles identified, 49 were reviewed. Of these, 17 addressed the relationship between sub-daily exposures to PM and cardiovascular effects: five assessed ST-segment depression indicating ischemia, eight assessed arrhythmia or fibrillation and five considered MI. Epidemiologic studies suggest that exposure to sub-daily levels of PM is associated with MI and ischemic events in the elderly. Epidemiological studies of sub-daily exposures suggest a plausible biological mechanism involving the autonomic nervous system while experimental studies suggest that vasomotor dysfunction may also relate to the occurrence of MI and ischemic events.</p> <p>Conclusions</p> <p>Future studies should clarify associations between cardiovascular effects of sub-daily PM exposure with PM size fraction and concurrent gaseous pollutant exposures. Experimental studies appear more promising for elucidating the physiological mechanisms, time courses and causes than epidemiological studies which employ central pollution monitors for measuring effects and for assessing their time course. Although further studies are needed to strengthen the evidence, given that exposure to sub-daily high levels of PM (for a few hours) is frequent and given the suggestive evidence that sub-daily PM exposures are associated with the occurrence of cardiovascular effects, we recommend that persons with cardiovascular diseases avoid such situations.</p

    Research to support public health action on heat and health - 20th Annual John K. Friesen Conference - Growing Old in a Changing Climate: Exploring the Interface Between Population Aging and Global Warming (2011)

    No full text
    This video clip comprises the four presentations of Panel Session 2, “Mitigation and Prevention Strategies: Lessons Learned on the Front Lines” held at the 20th Annual John K. Friesen Conference, "Growing Old in a Changing Climate: Exploring the Interface Between Population Aging and Global Warming," MAY 25-26, 2011, Vancouver, BC. Dr. Tom Kosatsky " Research to support public health action on heat and health" - Research from various disciplines can promote, support and contextualize public health action to prevent illness and death related to hot weather. Examples are sociological assessments of who died during the 1995 Chicago heat wave, experimental evidence of age-related differentials in the physiology of the heat response, occupational medicine research into the time course of heat acclimatization, models of the cooling capacity of room fanning versus water misting of occupants, and spatial overlays of attributes of heat vulnerability over a city or region. During this presentation I will review projects to which I have contributed since 2003: the PHEWE study of mortality attributable to heat in 15 European cities; surveys of city and country preparedness for heat in Europe; the influence of local greenery on where hot day deaths occur in Montreal; knowledge, attitudes and practices of Montreal residents with chronic heart and lung disease around hot weather preparedness and response; changes in heat susceptibility from 1985-2010 in Vancouver; and, observed shifts in patterns of mortality during the 2009 Vancouver heat event. &nbsp; We also gratefully acknowledge a grant from the SFU Library\u27s Scholarly Digitization Fund for videography and post-production editing. &nbsp; See webpage for more information on the 20th Annual John K. Friesen Conference: http://www.sfu.ca/grc/friesen/friesen2011

    Health effects of hot weather: from awareness of risk factors to effective health protection.

    No full text
    Because of the increasing concerns about climate change and deadly heatwaves in the past, the health effects of hot weather are fast becoming a global public health challenge for the 21st century. Some cities across the world have introduced public health protection measures, with the timely provision of appropriate home-based prevention advice to the general public being the most crucial point of intervention. In this Review, we report current epidemiological and physiological evidence about the range of health effects associated with hot weather, and draw attention to the interplay between climate factors, human susceptibility, and adaptation measures that contribute to heat burdens. We focus on the evidence base for the most commonly provided heat-protection advice, and make recommendations about the optimum clinical and public health practice that are expected to reduce health problems associated with current and future hot weather

    Impact of summer heat on urban population mortality in Europe during the 1990s: an evaluation of years of life lost adjusted for harvesting.

    Get PDF
    BACKGROUND: Efforts to prevent and respond to heat-related illness would benefit by quantifying the impact of summer heat on acute population mortality. We estimated years of life lost due to heat in 14 European cities during the 1990s accounting for harvesting. METHODS: We combined the number of deaths attributable to heat estimated by the PHEWE project with life expectancy derived from population life tables. The degree of harvesting was quantified by comparing the cumulative effect of heat up to lagged day 30 with the immediate effect of heat, by geographical region and age. Next, an evaluation of years of life lost adjusted for harvesting was obtained. RESULTS: Without accounting for harvesting, we estimated more than 23,000 years of life lost per year, 55% of which was among individuals younger than 75. When 30 day mortality displacement was taken into account, the overall impact reduced on average by 75%. Harvesting was more pronounced in North-continental cities than in Mediterranean cities and was stronger among young people than among elderly. CONCLUSIONS: High ambient temperatures during summer were responsible for many deaths in European cities during the 1990s, but a large percentage of these deaths likely involved frail persons whose demise was only briefly hastened by heat exposure. Differences in harvesting across regions and classes of age could reflect different proportions of frail individuals in the population or could be indicative of heterogeneous dynamics underlying the entry and exit of individuals from the high-risk pool which is subject to mortality displacement
    corecore